The Antiparticle Filter - An Adaptive Nonlinear Estimator
نویسنده
چکیده
We introduce the antiparticle filter, AF, a new type of recursive Bayesian estimator that is unlike either the extended Kalman Filter, EKF, unscented Kalman Filter, UKF or the particle filter PF. We show that for a classic problem of robot localization the AF can substantially outperform these other filters in some situations. The AF estimates the posterior distribution as an auxiliary variable Gaussian which gives an analytic formula using no random samples. It adaptively changes the complexity of the posterior distribution as the uncertainty changes. It is equivalent to the EKF when the uncertainty is low while being able to represent non-Gaussian distributions as the uncertainty increases. The computation time can be much faster than a particle filter for the same accuracy. We have simulated comparisons of two types of AF to the EKF, the iterative EKF, the UKF, an iterative UKF, and the PF demonstrating that AF can reduce the error to a consistent accurate value.
منابع مشابه
A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملNonlinear Systems Identification Using the Volterra Model
Nonlinear adaptive filtering techniques are widely used for the nonlinearities identification in manny applications. This paper investigates the performances of the Volterra estimator by considering a nonlinear system identification application. The Volterra estimator parameters are compared with those of a linear estimator. For the nonlinear estimator, based on a second order RLS Volterra filt...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملRobustness of the Quadratic Antiparticle Filter for Robot Localization
Robot localization using odometry and feature measurements is a nonlinear estimation problem. An efficient solution is found using the extended Kalman filter, EKF. The EKF however suffers from divergence and inconsistency when the nonlinearities are significant. We recently developed a new type of filter based on an auxiliary variable Gaussian distribution which we call the antiparticle filter ...
متن کامل